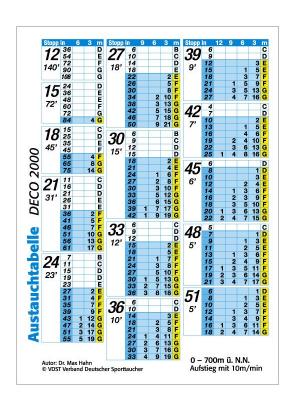


Tauchgangsplanung

Umkehrdruck


Ausgangsüberlegung:

Bei welchem Druck ist spätestens der Aufstieg zu beginnen, damit die Restluft für den Aufstieg einschließlich Austauchpausen und Sicherheitsstopp reicht? (hier: Versorgung eines Tauchers ohne Probleme)

- Berechnung des erforderlichen Luftvolumens für den Aufstieg einschließlich Austauchpausen (Dekostopps) und Sicherheitsstopp.
- In Abhängigkeit der Flaschengröße kann der notwendige Mindestdruck errechnet werden.

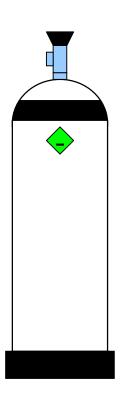
Bei dieser Berechnung wird der Reservedruck nicht mit eingeplant!

Beispiel:

Aufstiegsberechnung bei Nullzeittauchgang

Aufstieg aus 40 m Tiefe:

4 min bis zur Oberfläche

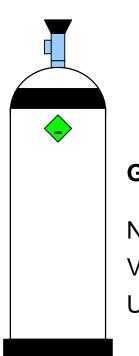

3 min Sicherheitsstopp auf 5 m

7 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg: **Nullzeittauchgang** (Atemminutenvolumen: 20 l/min)

Aufstieg aus 40 m Tiefe:

4 min ⋅ 5 bar ⋅ 20 l /min / 1 bar → 400 Liter


3 min - 1,5 bar - 20 l /min / 1 bar → 90 Liter

Gesamtvolumen Aufstieg → 490 Liter

Notwendiger Mindestdruck bei einer 10 Liter Flasche

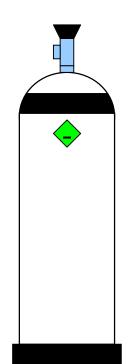
Boyle-Mariotte:
$$p \cdot V = konstant$$

$$\rightarrow p_{DTG} \cdot V_{DTG} = p_{Oberfläche} \cdot V_{Oberfläche}$$

Gesucht: Druckdifferenz DTG (p_{DTG})

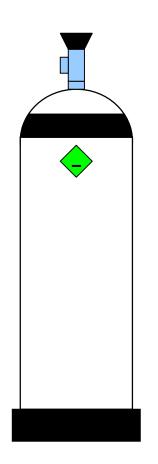
Notwendiges Luftvolumen 490 Liter (V_{Oberfläche})

Volumen DTG = 10 Liter (V_{DTG})


Umgebungsdruck Oberfläche: 1 bar (poberfläche)

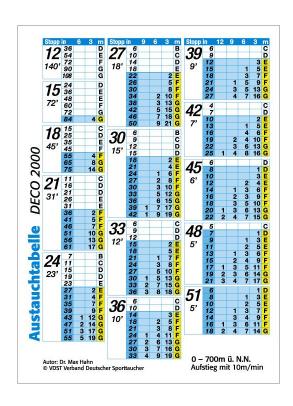
$$p_{DTG} = \frac{p_{Oberfläche} \cdot V_{Oberfläche}}{V_{DTG}} = \frac{1bar \cdot 490I}{10I} = 49 bar$$

Mindestdruck: 49 bar + 50 bar = 99 bar


Notwendiger Mindestdruck bei verschiedenen Flaschengrößen

Flaschen- größe	Luft- volumen	Druck- differenz	Reserve- druck	Mindest- druck
10 I	490 I	49 bar	+ 50 bar	99 bar
12 I	490 I	41 bar	+ 50 bar	91 bar
14 l (2 · 7 l)	490 I	35 bar	+ 50 bar	85 bar
15 I	490 I	33 bar	+ 50 bar	83 bar
20 l (2 · 10 l)	490 I	25 bar	+ 50 bar	75 bar
24 l (2 · 12 l)	490 I	20 bar	+ 50 bar	70 bar

$$p_{DTG} = \frac{p_{Oberfläche} \cdot V_{Oberfläche}}{V_{DTG}}$$


Annahme für die Berechnung des <u>Umkehrdrucks</u>: vollständiger Ausfall des Partner DTG auf 40 m Tiefe (hier: Problem und Versorgung von zwei Tauchern)

- Berechnung des erforderlichen Luftvolumens für den Aufstieg einschließlich Austauchpausen (Dekostopps) und Sicherheitsstopp.
- 2. Berechnung des **Umkehrdrucks** in Abhängigkeit der Flaschengröße

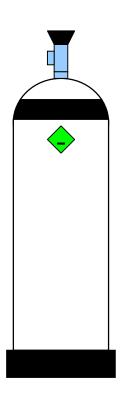
Ein Reservedruck muss bei diesem Szenario nicht im DTG verbleiben!

Aufstiegsberechnung bei Nullzeittauchgang

Aufstieg aus 40 m Tiefe:

1 min Problemlösung

4 min bis zur Oberfläche


3 min Sicherheitsstopp auf 5 m

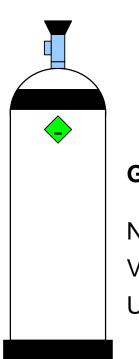
8 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg: **Nullzeittauchgang** Atemminutenvolumen: 20 l/min + 20 l/min (Partner)

Aufstieg aus 40 m Tiefe:

1 min ⋅ 5 bar ⋅ 40 l /min / 1 bar → 200 Liter

4 min - 5 bar - 40 l /min / 1 bar → 800 Liter


3 min - 1,5 bar - 40 l /min / 1 bar → 180 Liter

Gesamtvolumen Aufstieg → 1.180 Liter

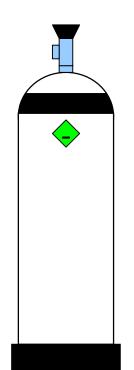
Umkehrdruck bei einer 10 Liter Flasche

$$\rightarrow p_{DTG}$$
 - $V_{DTG} = p_{Oberfläche}$ - $V_{Oberfläche}$

Gesucht: Druckdifferenz DTG (p_{DTG})

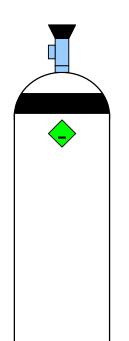
Notwendiges Luftvolumen 1.180 Liter (V_{Oberfläche})

Volumen DTG = 10 Liter (V_{DTG})


Umgebungsdruck Oberfläche: 1 bar (poberfläche)

$$p_{DTG} = \frac{p_{Oberfläche} \cdot V_{Oberfläche}}{V_{DTG}} = \frac{1bar \cdot 1.180I}{10I} = 118 bar$$

Umkehrdruck: 118 bar


Notwendiger Umkehrdruck bei verschiedenen Flaschengrößen

Flaschen- größe	Luft- volumen	Druck- differenz	Umkehr- druck
10 l	1.180 l	118 bar	118 bar
12	1.180 l	98 bar	98 bar
14 I (2 • 7 I)	1.180 l	84 bar	84 bar
15 l	1.180 l	79 bar	79 bar
20 (2 - 10)	1.180 l	59 bar	59 bar
24 (2 - 12)	1.180 l	49 bar	49 bar

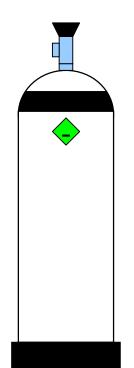
$$p_{DTG} = \frac{p_{Oberfläche} \cdot V_{Oberfläche}}{V_{DTG}}$$

Umkehrdruck bei verschiedenen Flaschengrößen und 40 m Tiefe

Flaschen- größe	Luft- volumen	Druck- differenz	Umkehr- druck	Mindest- druck
10 I	1.180 l	118 bar	118 bar	99 bar
12 I	1.180 l	98 bar	98 bar	91 bar
14 (2 • 7)	1.180 l	84 bar	84 bar	85 bar
15 I	1.180 l	79 bar	79 bar	83 bar
20 l (2 · 10 l)	1.180 l	59 bar	59 bar	75 bar
24 (2 • 12)	1.180 I	49 bar	49 bar	70 bar

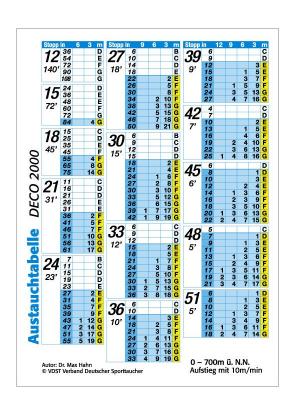
Wir beenden bei Erreichen des Umkehrdrucks den Tauchgang und beginnen mit dem Austauchen

Zum Vergleich:
Mindestdruck ohne Probleme aber inklusive Reservedruck


Umkehrdruck = V_{Oberfläche} · 1 bar / V_{DTG} mit

$$V_{Oberfläche} = p_{max. Tiefe} \cdot (t_{Aufstieg} + 1 min) \cdot 2 \cdot AMV / 1 bar$$

- AMV kann mit 20 l/min angesetzt werden (bei Bedarf natürlich auch höher), für 2 Personen also mit 40 l/min
- Druck der maximalen Tiefe p_{max, Tiefe} auch für den Aufstieg
- Zeit für den Aufstieg t_{Aufstieg} noch um + 1 min zur Problemlösung erhöhen
- ggf. Luftvolumen für weitere Stopps addieren

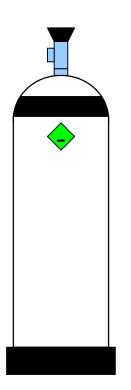


Umkehrdruck bei verschiedenen Flaschengrößen und Tiefen

Wassertiefe	20 m	30 m	40 m
Luftvolumen	540 I	820 I	1.180 I
10 I	54 bar	82 bar	118 bar
12 I	45 bar	68 bar	98 bar
14 I (2 · 7 I)	39 bar	59 bar	84 bar
15 I	36 bar	55 bar	79 bar
17 I (2 · 8,5 I)	32 bar	48 bar	69 bar
20 I (2 · 10 I)	27 bar	41 bar	59 bar
24 I (2 · 12 I)	23 bar	34 bar	49 bar

Aufstiegsberechnung bei **Dekotauchgang**

Aufstieg aus 40 m Tiefe nach 15 min Grundzeit:


- 1 min Problemlösung
- 4 min bis zur Oberfläche
- 4 min Dekostopp auf 6 m
- 6 min Dekostopp auf 3 m
- 3 min Sicherheitsstopp auf 3 m

18 min Gesamtaufstiegszeit

Gasverbrauch beim Aufstieg: **Dekotauchgang**Atemminutenvolumen: 20 l/min + 20 l/min (Partner)

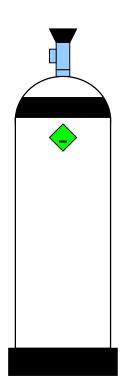
Aufstieg aus 40 m Tiefe nach 15 min Grundzeit:

1 min ⋅ 5 bar ⋅ 40 l /min / 1 bar → 200 Liter

4 min - 5 bar - 40 l /min / 1 bar → 800 Liter

4 min - 1,6 bar - 40 l /min / 1 bar → 256 Liter

6 min - 1,3 bar - 40 l /min / 1 bar → 312 Liter


3 min - 1,3 bar - 40 l /min / 1 bar → 156 Liter

Gesamtvolumen Aufstieg → 1.724 Liter

Wie ist vorzugehen, wenn beide Tauchpartner unterschiedliche Flaschengrößen haben?

Annahme:

Taucher A hat ein 15-Liter-DTG
Taucher B hat ein Doppel-7-Liter-DTG

Bei unterschiedlichen Flaschengrößen ist aus Sicherheitsgründen vom ungünstigeren Fall auszugehen, d.h. es wird die kleinste vorhandene Flaschengröße angesetzt

hier: 2 - 7 Liter

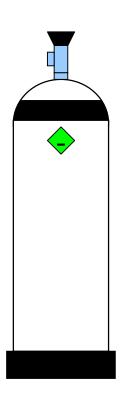
Umkehrdruck bei einer 2 - 7 Liter Flasche

$$\rightarrow p_{DTG} - V_{DTG} = p_{Oberfläche} - V_{Oberfläche}$$

Gesucht: Druckdifferenz DTG (p_{DTG})

Notwendiges Luftvolumen 1.724 Liter (V_{Oberfläche})

Volumen DTG = **14 Liter** (V_{DTG})


Umgebungsdruck Oberfläche: 1 bar (poberfläche)

$$p_{DTG} = \frac{p_{Oberfläche} \cdot V_{Oberfläche}}{V_{DTG}} = \frac{1bar \cdot 1.724 I}{14 I} = 123 bar$$

Umkehrdruck: 123 bar

Kann dieser Tauchgang so durchgeführt werden?

Für die Grundzeit von 15 min auf 40 m erforderliches Luftvolumen:

15 min - 5 bar - 20 l/min / 1 bar = 1.500 l

zuzüglich Gesamtvolumen Aufstieg 1.724 l

ergibt 3.224 I

d.h. der Flascheninhalt von 2.800 I reicht nicht aus!

Lösungsansätze:

- Tauchgang mit **größerem DTG** durchführen (z.B. Doppel-8,5 l-DTG)
- geplante Grundzeit reduzieren

